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Abstract—Given the strong link between energy and be-
havior, sensing and metering per-user energy consumption
is critical for understanding individual energy behavior and
for customizing personalized feedback to promote energy-
saving behavior. This paper explores the feasibility of per-
user energy metering by proposing a per-user energy metering
system that uses thermal-imaging and thermal-identification to
track and associate energy usage among individual occupants
in a shared working/living space. Each occupant wears a
thermal tag that emits a unique temperature signature for
user identification. The system introduces location-based per-
user energy disaggregation that accounts per-appliance energy
usage to individual energy consumer(s), i.e., occupant(s) nearby
activated appliances. We have designed, prototyped, and tested
the ThermalProbe system. Results show that the system meters
per-user energy consumption with an average error of 12.66%.

Keywords-thermal sensing; per-user energy consumption

I. INTRODUCTION

Because human behavior drives energy demand, under-

standing and influencing human behavior as a cost effective

means to reduce energy demand [1] have attracted the

attention of broad-ranging researchers in science, technol-

ogy, and behavioral disciplines. For example, turning off

unnecessary lights is a simple yet effective approach to

conserve energy. To track individual energy consumption,

an accurate metering tool [1] is critical for bringing aware-

ness about individual energy behavior and for designing

personalized feedback to promote energy-saving behavior.

However, recent studies [5], [16] proposed per-user energy

metering systems which attribute the consumed energy to

consumers through manual appliance usage labeling, which

require high human effort to use these systems in our

everyday lives. To automatically track appliance usage for

each user, this study proposed ThermalProbe, a per-user
energy sensing and metering system that estimates per-user

energy consumption in a shared working and living space

through an automatic thermal identification technique.

A previous work [2] introduced a thermal-based energy

sensing technique called HeatProbe. HeatProbe first detects

appliance on/off events by recognizing universal tempera-

ture increasing/decreasing patterns on the appliance surface

(from the thermal camera) when turning on/off appliances.

By matching those on/off events to corresponding power

increasing/decreasing events indicated by an in-line power

meter based on the events’ temporal proximity, HeatProbe

further disaggregates per-appliance energy consumption by

summing up the energy usage between the times when an

appliance is turned on and off. Inspiring from the concept

on detecting appliance on/off states by recognizing universal

temperature increasing/decreasing patterns, ThermalProbe

extends the thermal-based sensing to per-user energy sensing

and metering to identify the energy consumer(s), i.e., the

user(s), for each detected appliance usage through a novel

thermal identification technique. ThermalProbe includes the

following extended functions. (1) It develops thermal-
identification in the form of a tag worn around an occupant’s

neck (Fig. 1(a)). This tag emits unique thermal signals to

the thermal camera which identifies individual occupants

and tracks their relative locations to the activated appliances

(Fig. 1(b) and (c)). (2) It introduces location-based per-
user energy disaggregation, which includes location-based

rules to account an appliance energy usage to occupant(s)

nearby the activated appliances. For example, it is possible

to specify and include a location-based rule for an appliance

with an on-device switch (e.g., a desktop lamp), which

attributes its energy consumption to the occupant closest to

the activated appliance (e.g., the user sitting on the desk

where the lamp is located) at the time when the appliance is

turned on. The proposed system correlates energy consump-

tion of appliances to their appropriate users by matching

spatial proximity between the appliances (whose locations

are indicated by their heat surfaces) and occupants (whose

locations are indicated by their thermal tags) at the time

when those appliances were turned on/off.

Several recent energy metering systems, such as Elec-

triSense [3] and ViridiScope [4], track per-appliance power

usage by analyzing electro-magnetic signals produced during

appliance operation. However, appliances in a shared work-

ing/living space may not be used by a single occupant. In this

case, disaggregating per-user energy consumption becomes
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(a) Sample heatmap

(b) Temperature readings of the tag #1

(c) Temperature readings of the tag #2

Figure 1: The sample heatmap and temperature readings for tags #1 and #2. Two tags (two glowing dots indicated by the

white circles) were worn by two different occupants (using their notebook PCs) in (a). The human identities are encoded in

the combinations of various inter-peak durations modulated in the corresponding temperature readings of (b) and (c).

difficult given the lack of one-to-one mapping between

appliances and occupants. Recognizing this difficulty, the

Human-Building-Computer Interaction (HBCI) system [5]

leverages mobile phones to record and track per-user energy

consumption. However, this approach requires manual effort

to scan an appliance’s QR code prior to the activation of the

appliance, and is therefore only semi-automated. In contrast,

our ThermalProbe system aims to automate the process of

per-user power sensing and metering - requiring no user

feedback turning on/off the appliances.

The contribution of this study is to design, prototype, and

evaluate a per-user power metering system. The proposed

system extends thermal-based power sensing to include

thermal identification and per-user power metering. This

experiment includes 122 appliance usage sessions with 6

participants to evaluate the system’s accuracy in thermal-

identification and per-user power metering. Results show

that the proposed system can correctly track user identity

82% of the time when they are in the view range of

the thermal camera, while achieving an average 87.34%

accuracy in per-user power disaggregation. Furthermore, we

discuss the strengths and weaknesses of the thermal-based

approach and lessons learned which can be leveraged by

future energy monitoring projects.

II. THE THERMALPROBE SYSTEM OVERVIEW

The design of the ThermalProbe system includes three

inference modules to estimate per-user power consumption:

(1) the thermal power meter, (2) the thermal identification,

and (3) the per-user power disaggregation. These three

modules are described as follows.

The thermal power meter implements the thermal sens-

ing technique used in HeatProbe [2] to disaggregate per-

appliance power consumption. This section provides a brief

description and refers interested readers to the HeatProbe

paper for details. The thermal sensing technique uses two

sensors: a thermal camera and a power meter. By analyzing

changes in the power meter readings, the system infers

power events correlated to appliances being turned on or

off. By analyzing heatmap images from the thermal camera,

the system recognizes the heated surface area of a running

appliance. Then, the system detects thermal events by ob-

serving the temperature changing patterns on the appliance’s

surface area where an increasing (decreasing) temperature

pattern suggests that the appliance is turned on (off). Finally,

matching the power and thermal events based on the events’

temporal proximity disaggregates per-appliance energy con-

sumption. The system also tracks the occupants’ heated body

segments that are excluded from appliance surfaces. When

used together with an inline master power meter, HeatProbe

further disaggregates per-appliance energy consumption by

summing up the energy usage between the times when an

appliance is turned on and off. The system also tracks the

occupants’ heated body segments that are excluded from

appliance surfaces.

The thermal identification recognizes each individual oc-

cupant by detecting a unique temperature changing pattern

emitted from the thermal tag worn on each occupant’s neck

as shown in Fig. 1(b) and (c). Section III describes the details

on how thermal-identification encodes and decodes thermal

signals.

The per-user power association tracks per-user energy
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(a) Envelope detection (a static tag) (b) Envelope detection (a moving tag)

(c) Temperature data recovery (a static tag) (d) Temperature data recovery (a moving tag)

Figure 2: The temperature readings of a static tag or moving tag obtained after applying envelope detection (the upper

graphs), and temperature data recovery (the lower graphs). The black lines are the raw temperature data. The red and blue

lines indicate the temperature readings after applying envelope detection and temperature data recovery, respectively.

consumption over an energy audit period. It provides de-

fault location-based association rules. Optionally, energy

administration staff can alter and specify the accounting

rule for each appliance through an administrative user in-

terface. Based on these rules, this module attributes the

energy consumption of each appliance usage to specific users

(i.e., the corresponding energy consumers) based on spatial

proximity (i.e., location-based rules) or proportionally to a

group of occupants present during appliance operation (i.e.,

administrator-specified rules). For example, in Fig. 1(a), the

per-user power association attributes energy consumed by

notebook PCs by matching spatial proximity between the

notebook PCs and occupants at the time when the notebook

PCs were turned on/off. Section IV describes the details of

per-user power association.

III. THERMAL IDENTIFICATION

Thermal identification recognizes each occupant by de-

coding a unique thermal signature emitted from his/her

thermal tag. The following subsections describe thermal

signal encoding and decoding schemes.

A. Thermal Encoding

Our thermal tags adopt temporal encoding of thermal

signals for user identification. Temporal encoding encodes

identification information by varying the time interval be-

tween successive thermal pump-and-diffuse stages (anal-

ogous to electric stimuli spikes). Temperature variations

were generated using a Peltier device. A Peltier device is

a thermoelectric device with two plates. When an electrical

current flows from one plate to the other (i.e., the thermal

pumping stage), the top plate heats up to a temperature above

the human body temperature, thus making the thermal tag

visible to a thermal camera. When the electrical current stops

(i.e., the thermal diffusion stage), the top plate loses heat and

its temperature decreases. A thermal tag creates temporal

signatures by altering frequencies of applying electrical

voltage to its Peltier device. The results are temperature

changing patterns (Fig. 1(b) and (c)) observable by a thermal

camera, which then decodes these patterns for user identifi-

cation.

In the proposed system, each occupant wears a thermal

tag around his/her neck. Each thermal tag is sewed onto

the fabric of an employee badge string. To avoid the camera

occlusion problem where a user’s thermal tag is hidden from

the camera view, multiple thermal tags can be sewed to

various positions on the employee badge string such that at

least one thermal tag is visible to the ceiling-mounted ther-

mal camera. For accurate user identification, we performed

an experiment to evaluate how well our thermal tag works

by measuring the so-called interval detection error, or the

time difference between the tag-encoded time interval (i.e.,

the encoding interval when a thermal tag applies voltage to
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the Peltier device) and the camera-observed decoded time

interval. Results showed that the average interval detection

error was 0.39 second with a maximum error of 1.257

seconds. Additionally, results revealed that it took a thermal

tag a minimum of 7 seconds to heat up and cool down its

thermoelectric plates, thus completed a thermal pump-and-

diffuse cycle. Based on these results, the proposed temporal

encoding scheme uses a minimum temporal interval of 7

seconds with 2 seconds (i.e., > 1.257 seconds) increment.

In other words, the 2nd temporal interval is 9 seconds;

the 3rd temporal interval is 11 seconds; and so forth.

To uniquely encode 20 thermal tags, 2-code combinations

with seven selected temporal intervals (7, 9, 11, 13, 15,

17 and 19 seconds) served as the basic temporal codes.

The experiments in this study adopted twenty-one 2-code

combinations, which was sufficient to uniquely encode 20

occupants.

B. Thermal Decoding

Given an observed temperature stream, the proposed tech-

nique determines user identity by detecting the temporal

code combinations of observed heat pump-and-diffuse in-

tervals. There are four steps in this module: (1) envelope

detection, (2) temperature data recovery, (3) inter-peak in-

terval detection, and (4) user identification.

In the first step, envelope detection constructs an envelope

(the red lines in Fig. 2(a,b)) by connecting successive local

maximal values from the raw temperature readings. Since

the infrared detector in a thermal camera takes time to

collect enough IR radiation energy to determine an accurate

temperature value, the sensing temperature of a moving tag

(large zigzag values in Fig. 2(a)) can incur a high error.

Additionally, passers-by can block a tag from the view of a

thermal camera, resulting in temporary data loss. Fig. 2(b)

shows the temperature curve (the black line) of a moving tag

as the tag carrier is walking toward a seat, with a flat dip (i.e.,

temperature data loss) caused by a passer-by blocking the tag

from the 87th ∼ 92th second. To reduce sensor errors, the

system applies envelope detection to smooth the temperature

curve.

The second step addresses temporary data loss from

camera occlusion. The system first locates the occluded

time interval by finding large gradient changes during the

temperature-increasing (-decreasing) phases. By locating the

starting and ending points (points D and E in Fig. 2(c))

on the occluded time interval, the system applies linear

interpolation to connect these two points (thus, forming the

blue line in Fig. 2(c)), or to extend two lines from these two

end points (thus, forming the blue lines FH and GH in Fig.

2(d)). These two methods recover and estimate lost data.

The third step decodes temporal code by measuring the

length of each thermal pump-and-diffuse interval (Fig. 3(a)).

The fourth step looks up the detected temporal code in a

code book to find the best-matched user identification. The

(a) Processed temperature readings

ID Assigned temporal codes Matching count

#1 9, 11 3

#2 9, 13 3

#3 11, 13 6

(b) Matching table

Figure 3: The detected heat-transferring durations and

matching table. All detected transferring durations appear

in red numbers and are placed at the corresponding stage.

The corresponding matching table is in (b). Each row records

related information for indexing a user, including the ID, the

assigned temporal codes, and the matching count.

system computes a similarity table, shown in Fig. 3(b), in

which each entry computes the matching count between the

measured codes and the assigned codes of each user. The

most likely user, e.g., user #3, is the one with the highest

matching count among all users.

IV. LOCATION-BASED PER-USER POWER

DISAGGREGATION

Per-user power disaggregation uses relative distance be-

tween occupants and activated appliances to determine

which occupant(s) is the energy consumer(s) for each appli-

ance usage session. To better describe the usage relationship

between the activated appliances and its energy consumers,

this study defines default location-based accounting as well

as general user-specified accounting. If the energy admin-

istrators want to customize the accounting rule for any

appliance, they can specify user-specified rules through a

user interface. Otherwise, the system will apply the default

rule. These default and user-specified rules are described as

follows.

A. Default Location-based Accounting

The default location-based accounting determines the

most likely occupant who turned on an appliance. If the
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appliance is activated by a physical switch on the appliance,

the system finds the occupant who touches the appliance at a

time instance closest to the time when the appliance is turned

on (i.e., the turn-on time). This occupant-touch time must

also fall within 60 seconds of the appliance turn-on time,

in which the 60 seconds were empirically determined to

account for the time shift in the event detection and matching

algorithms. Then, the energy consumed in this appliance

usage session will be apportioned to that appliance-touching

occupant. If the appliance is activated by a remote control

or the system cannot find any occupant who touches the

activated appliance, the system finds the occupant who stays

closest to the appliance for the longest period during the

activated interval of the appliance.

The default location-based accounting has this limitation:

if the activated appliance serves and benefits a group of

users, e.g., several home occupants watching a TV together,

the energy consumed by this communal appliance should not

be attributed only to the occupant who activates the TV but

should be proportionally attributed to the home occupants

based on the amount of their time present in front of the TV

during the appliance’s operation. We address this limitation

in the user-specified accounting described below.

B. User-Specified Accounting

The user-specified accounting enables an energy admin-

istrator to customize how to divide energy consumed by

an activated appliance among possibly multiple house occu-

pants who are present and nearby the appliance’s location.

The system provides a user interface to specify this energy

accounting rule. First, the energy administrator selects a tar-

get appliance, e.g., TV, from a sample thermal image. Then

the energy administrator marks the appliance’s service area,

inside where occupants will benefit from this appliance’s

output and thus will equally share the appliance’s energy

usage. For example, a TV’s service area could be a living

room sub-area in front of the TV.

If the appliance is later moved by occupants, our system

does not track its new location. As a result, the energy

administrators need to input the energy accounting rule

again using the user interface on a new thermal image (i.e.,

the appliance’s current location can be marked on the new

thermal image) described in the previous paragraph. Our

future work plans to place a special thermal tag (which heats

up and cools down in a specified temporal pattern) on the

appliance for tracking its new location.

V. IMPLEMENTATION DETAILS

The ThermalProbe system consists of (1) a FLIR A325

thermal camera [6], and (2) an ACme wireless inline power

meter [11]. The thermal camera was attached to a sliding rail

mounted on the ceiling to sense heated appliance surface ar-

eas resulting from appliance operation. The thermal images

captured by the camera (through an Ethernet interface) were

(a) The schematic block di-
agram

(b) The prototype of
the thermal tag

(c) The thermal tag
worn by the user

Figure 4: The schematic block diagram and prototype of a

thermal tag. The Peltier controlling circuit is wired to the

Peltier device (marked by red arrow) along the black stripe

as shown in (b). This tag is worn by a user with the Peltier

device placed on his neck in (c).

sent to a backend data processing server. In the current proto-

type, the server records and processes sensor data. This study

also develops image processing software based on OpenCV

libraries to process recorded thermal images. As for power

monitoring, the inline power meter transmits power readings

to the server through the Zigbee radio every second. A

corresponding wireless Zigbee-based data receiving module

attached to the server receives power readings. The server

records these power readings for subsequent processing by

the power usage detection module.

Each thermal tag includes one 3cm x 3cm Peltier heat

pump device (marked by the red arrow in Fig. 4(b)) and

a Peltier controlling circuit. The controlling circuit consists

of an Arduino Uno microcontroller board [7], a switching

circuit, and a power supply. The Arduino microcontroller

uses Pulse-Width Modulation (PWM) signals to control the

heat-pump frequencies. These PWM signals are fed into a

switching circuit sitting between the battery power and the

Peltier device to dynamically regulate the voltage driving

signals as shown in Fig. 4(a). Pumping heat requires a non-

negligible amount of energy. To save energy, the thermal

tag does not need to pump heat after its occupant has been

identified by the thermal camera. By dynamically skipping

unnecessary heat-pumping actions, the system can further

reduce the heat-pumping frequency and save more energy. In

the future, we will improve the design of the thermal tag by

adding a wireless control interface to dynamically optimize

power consumption. To improve its wearability, we sew the

thermal tag onto a badge string (Fig. 4(b) and (c)).

VI. EVALUATION

To measure the accuracy of the ThermalProbe system, the

experiments conducted in this study involved three appliance

usage scenarios with multiple users.
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Table I: Experimental appliance usage scenarios for three

types of environments.

Environment
(1) cubicle

spaces
(2) room

spaces
(3) kitchen

spaces
Participating
Appliances

2 PCs 2 Notebooks 1 water heater

2 monitors 2 desk lamps 1 toaster
2 desk lamps 1 television 1 electric oven

1 heater 1 shredder 1 microwave
1 toaster 1 printer 1 television
1 printer

# of participants
for each round

2 people 2 people 3 people

# of on/off
events per round

25 16 20

A. Appliance Usage Scenarios

To test the feasibility of the ThermalProbe system, we

conducted scripted experiments in the lab (due to the cost

issue described later). Table I lists three appliance usage

scenarios. We collected data from 122 different appliance

usage sessions in which the session durations ranging from

one to 72 minutes, with an average length of about 22

minutes. These scenarios differ in terms of operating appli-

ances, the number of participants, the number of appliance

usage events, and the energy accounting rules. Each scenario

included a scripted sequence of appliance usage actions for

participants to perform. Six participants were recruited for

these experiments. All participants were graduate students in

our department. Each set of scenarios included two repeated

rounds involving different pairs of participants.

Appliance usage scenario #1 (office cubicles). Two

participants worked in two adjacent cubicle spaces with the

thermal camera mounted on the ceiling monitoring their

electricity usage. Appliances included two PCs, two LCD

monitors, and two desk lamps. One heater, one toaster, and

one printer were placed between the two cubicles. Among

these appliances, the heater was designated as a communal

appliance through the administrative user interface. The

appliance usage script for participant #1 was to (1) turn

on/off a PC, (2) turn on/off a LCD monitor, (3) turn on/off a

desk lamp, and (4) print documents from the shared printer.

The appliance usage script for participant #2 was to turn

on/off (1) a PC, (2) a LCD monitor, (3) a desk lamp, (4) a

heater, and (5) toast bread using the toaster.

Appliance usage scenario #2 (a meeting room). Two

participants discussed their project in a meeting room with a

thermal camera mounted on the ceiling monitoring tracking

their electricity usage. Appliances included two notebook

PCs, two desk lamps, one TV-size screen, one printer, and

one paper shredder. Among these appliances, the televi-

sion was assigned as a communal appliance through the

administrative user interface. The appliance usage script for

participant #1 was to turn on/off (1) a notebook PC, (2) a

desk lamp, (3) the TV-size screen, and (4) use the printer to

print a document. The appliance usage script for participant

#2 was to turn on/off (1) a notebook PC, (2) a desk lamp,

(3) the paper shredder, and (4) print another document.

Appliance usage scenario #3 (a kitchen). Three partici-

pants operated various appliances in a kitchen with a thermal

camera mounted on the ceiling monitoring their electricity

usage. Appliances included a water boiler, a toaster, an

electric oven, a microwave, and one TV. The appliance usage

script for participant #1 was to (1) boil water using the

electric water heater, (2) toast bread using the toaster, and

(3) heat food in the microwave. The appliance usage script

for participant #2 was to (1) use the microwave oven and (2)

heat food in the electric oven, and (3) watch some TV. The

appliance usage script for participant #3 was to (1) make

toast with the toaster, and (2) heat food in the electric oven.

B. Evaluation Metrics

This study measures the following system performance

metrics.

· User identification error: This measures the per-

centage of time the system correctly (or incorrectly)

identifies occupants from their thermal tags.

· Per-user power metering error: This measures the er-

ror percentage of the system-detected (per-user) power

consumption versus the ground-truth (per-user) power

consumption.

C. Results

Table II: Confusion matrix for the user identity error.

��������Room
Date

Presence Non-presence

Presence 0.82 0.03
Non-presence 0.18 0.97

User identification error. Table II presents a confusion

matrix that measures the percentage of time the system

correctly (or incorrectly) detects the presence (or non-

presence) of a participant with his/her thermal tag. The time

accuracy of detecting the presence of participants is 82%,

with a small false positive rate (3%). The slightly lower

time accuracy (82%) is mainly due to time intervals when a

participant is walking. When participants are mobile, the

observed temperature signals produce a larger error than

those from stationary participants [6], and therefore result

in high incorrect temporal codes. However, our findings

show that participants tend to stay at fixed locations while

they are using appliances that are plugged into the wall

sockets. Therefore, these incorrectly-decoded time intervals

when occupants are mobile does not seriously affect system

accuracy in tracking per-user power consumption.

Per-user power metering error. Table III presents the ac-

curacy of metering per-user power consumption. The actual
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Table III: Per-user power metering error for all sharing sce-

narios. Si, Ri, and Pi mean the identifications of scenario,

rounds, and participants, respectively. True (Estimated) col-

umn means the true (estimated) energy consumption. Diff
column means the difference between true and estimated

energy consumption. Error (Avg_error) column means

the estimated error percentage (average estimated error per-

centage for an appliance usage scenario).

Si Ri Pi True Estimated Diff Error Avg error
(kJoule) (kJoule) (kJoule) (%) (%)

S1 R1 P1 949.94 857.64 92.30 9.72 10.02
P2 1151.95 1069.97 81.98 7.12

R2 P3 992.48 1048.38 55.90 5.63
P4 889.56 732.61 156.94 17.64

S2 R1 P2 477.04 405.86 71.18 14.92 7.82
P3 579.07 540.24 38.83 6.71

R2 P4 462.35 481.44 19.09 4.13
P5 586.04 553.59 32.44 5.54

S3 R1 P1 698.37 690.06 8.31 1.19 17.63
P2 452.12 456.28 4.16 0.92
P3 152.27 90.15 62.12 40.80

R2 P4 688.32 838.39 150.07 21.80
P5 387.81 246.07 141.74 36.55
P6 147.77 141.07 6.70 4.53

All - - - - 65.84 12.66 -

count (estimated count) column gives the actual (estimated)

energy consumption. The error column computes the differ-

ence between the actual and estimated energy consumption.

The error % column gives the estimated error percentage.

Each scenario involved two rounds of repeating the same

appliance usage script but with different participants. The

average error percentage from all scenarios is 12.66% and

the average error in energy consumption is 65.84 kilojoules.

Among these rounds, these percentage errors larger than

10% are caused by either (1) incorrect user identification

or (2) higher appliance power metering errors for some

appliance usage sessions in a round. For example, the

microwave energy consumption ought to go to participant

#5 in scenario #3 but it was incorrectly identified as being

used by participant #4, and therefore causes large estimation

error for participants #4 and #5.

VII. RELATED WORK

A. Power Meters

In response to increasing energy costs, many people are

becoming more concerned about how much energy they

consume. Many commercialized power meters, such as

Cent-a-Meter [8], The Energy Detective (TED) [9], Kill-a-

Watt [10], etc., aim to help people understand their energy

consumption. However, research studies [11], [12] point

out problems with existing commercial power meters. First

of all, most home occupants have little or no experience

in installing monitoring devices in the breaker panel, and

installation presents safety concerns. Considering the instal-

lation difficulty for end-users, Patel et al. [12] designed an

easily-deployable power meter. This power meter consists

of a sensor unit with a wireless radio interface that can

be attached to the outside of the breaker panel. Another

problem with the current commercial power meters is that it

is difficult to systematically collect energy data for analysis.

B. Appliance-level Energy Consumption Systems

Systems that disaggregate energy consumption at the per-

appliance level provide fine-grained feedback about users en-

ergy behaviors. Non-intrusive load monitoring (NILM) [13],

[14] analyzes power readings from in-line power meters

by detecting sudden changes in voltage or current. NILM

then identifies appliance on/off or inner state changes, and

classifies them at the appliance/device level and total power

disaggregation. NILM relies on a database of appliance

usage signatures for classification. Berges et al. [17], [18]

and Roberts et al. [19] investigated how to build signature

databases for NILM systems. Based on NILM, Rowe et al.
[15] improved the training phase by exploiting an electro-

magnetic field (EMF) sensor. ElectriSense [3] takes advan-

tage of this phenomenon to track different appliance usages

by extracting features using machine learning toolkits.

ThermalProbe is based on the HeatProbe [2] system.

HeatProbe applies a thermal sensing method to disaggregate

the power consumption of each appliance. ThermalProbe ex-

tends disaggregation to the per-user level. ThermalProbe and

HeatProbe differ from previous methods in that they apply a

novel thermal sensing approach. Furthermore, neither system

requires a training or calibration phase.

C. Per-user Energy Consumption Systems

Several recent studies monitored per-user power con-

sumption in an effort to promote individual power-saving

behavior. Hay et al. [16] discusses how building sensor

systems can be potentially used to track individual energy

consumption and proposes several apportioning policies that

divides energy consumption among building occupants. The

Human-Building-Computer Interaction (HBCI) system [5]

provides each appliance with a QR code encoded with

an URI. By scanning the QR code with a mobile phone,

users are able to log the starting and ending times of each

appliance usage. By apportioning the energy consumption

of appliances based on usage time, this smart phone app

can provide per-user energy usage feedback. ThermalProbe

includes a thermal identification scheme to automatically

track user appliance usage. ThermalProbe lowers installation

costs because it does not require installing a tag on each

appliance. Furthermore, ThermalProbe does not need manual

scanning or labeling to track appliance usage, therefore

automating the per-user power apportioning process.

VIII. CONCLUSION

This study explores the feasibility of per-user energy

metering by proposing ThermalProbe, a novel energy meter
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system that estimates per-user energy consumption in a

shared working/living space. In the ThermalProbe system,

each occupant wears a thermal tag that emits a unique tem-

perature signature for user identification. Then, the system

implements location-based energy accounting that allows

energy administrators to specify location-based accounting

rules and to assign appliance energy usage to nearby occu-

pant(s). Experimental results from three multi-user scenarios

achieved average 87% accuracy in metering per-user energy

consumption.

Though the current per-user energy metering error

(12.66%) leaves much room for further improvement, we

believe that the ThermalProbe system offers an alternative

and promising thermal-sensing approach to tackle the prob-

lem of tracking per-user energy consumption.
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