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ABSTRACT

Developing sophisticated artificial intelligence (AI) systems requires
AI researchers to experiment with different designs and analyze
results from evaluations (we refer this task as evaluation analysis).
In this paper, we tackle the challenges of evaluation analysis in the
domain of question-answering (QA) systems. Through in-depth
studies with QA researchers, we identify tasks and goals of evalua-
tion analysis and derive a set of design rationales, based on which we
propose a novel approach termed prismatic analysis. Prismatic anal-
ysis examines data through multiple ways of categorization (referred
as angles). Categories in each angle are measured by aggregate
metrics to enable diverse comparison scenarios.

To facilitate prismatic analysis of QA evaluations, we design and
implement the Question Space Anglyzer (QSAnglyzer), a visual ana-
lytics (VA) tool. In QSAnglyzer, the high-dimensional space formed
by questions is divided into categories based on several angles (e.g.,
topic and question type). Each category is aggregated by accuracy,
the number of questions, and accuracy variance across evaluations.
QSAnglyzer visualizes these angles so that QA researchers can
examine and compare evaluations from various aspects both individ-
ually and collectively. Furthermore, QA researchers filter questions
based on any angle by clicking to construct complex queries. We
validate QSAnglyzer through controlled experiments and by ex-
pert reviews. The results indicate that when using QSAnglyzer,
users perform analysis tasks faster (p < 0.01) and more accurately
(p < 0.05), and are quick to gain new insight. We discuss how
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prismatic analysis and QSAnglyzer scaffold evaluation analysis, and
provide directions for future research.

Keywords: visual analytics; visualization; interactive visualization;
question answering; multi-experiment analysis; visual comparison;
visual exploration; prismatic analysis
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1 INTRODUCTION

In the artificial intelligence (AI) era, complex AI systems such
as conversational agents, self-driving cars, and recommendation
systems are part of daily life. Various reports indicate that AI plays
an increasingly influential role in human society [18, 23]. Major
technology companies [1, 12] as well as government agencies [6]
are putting increasing emphasis on AI applications.

The development of a sophisticated AI system is a challenging
process. AI researchers experiment with different AI system ar-
chitectures and evaluate their performance on the target tasks. As
components in the system interact with each other, it can be diffi-
cult to make sense of evaluations and find insight to improve the
system. For example, a question answering (QA) system, a type of
AI system that answers questions, may involve information retrieval
(IR), natural language processing (NLP), knowledge representation,
reasoning, and machine learning (ML) components. All components
are complex in their own ways, and can interact with each other in
complicated ways such that the impact of changes in one compo-
nent can propagate to overall changes in behavior. AI researchers
may modify one component based on insight gained from one set
of evaluations, but discover that the overall behavior of the system
changes in unexpected ways. For instance, an NLP component can
take the output of an IR component as input, and pass this onto
an ML component. Small changes in the IR component may thus



propagate to the ML component, and lead to unanticipated changes
in overall behavior.

Traditional metrics for system performance (e.g., task accuracy)
often fail to provide useful and actionable insights for AI researchers.
For instance, two versions of a QA system can both achieve 50%
accuracy by answering completely different sets of questions cor-
rectly. One version may answer all the questions starting with ‘what’
correctly, whereas the other version may get all the ‘why’ questions
right. More complex patterns of the strengths and weaknesses of
each version are challenging to discover and track. The burden for
AI researchers is to analyze evaluations to understand how changes
impact system behavior, and then find ways to enhance the system.

One way to aid this investigation of evaluations is to introduce
categorization. Showing finer-grain patterns may provide deeper in-
sight than showing overall metrics. The challenge is that researchers
do not know a priori the best way to categorize evaluations. In
addition, the best insight to improve the system may require iterative
filtering on various types of categories. The complexity of such
exploratory queries can further impose burdens on researchers.

In this paper, we tackle the challenge of evaluation analysis in
the domain of QA systems. We work closely with QA researchers
to identify their goals and tasks in analyzing QA evaluations, and
derive a set of design rationales that support their workflows. These
in-depth studies with QA researchers lead to our proposed novel
approach termed prismatic analysis. This approach examines data
from multiple angles, where each angle shows a different way to
divide the input data into categories. Categories are then measured
by aggregate metrics for further investigation. With this approach,
users can perform various comparison scenarios, such as between-
category, between-angle, and between-evaluation comparison. In
addition, the approach works with data subsets as well, so QA
researchers can conduct analysis even after filtering.

Although multiple angles of categories can enable more diverse
pattern discovery, it can also be overwhelming to researchers. To
support the prismatic analysis of QA evaluations, we design and
implement a visual analytics (VA) tool called the Question Space
Anglyzer (QSAnglyzer). In QSAnglyzer, questions in evaluations
constitute a high-dimensional space in which each question is a point.
The question space can be divided into categories based on several
angles, such as topics and question types. The aggregate metrics for
each category that are chosen based on the design rationales include
accuracy, the number of questions, and accuracy variance across
evaluations. QSAnglyzer visualizes these angles and aggregate
metrics of categories using color, height, and order. The QSAnglyzer
design enables QA researchers to examine and compare evaluations
from various angles individually and collectively. Furthermore, QA
researchers filter questions based on any angle by clicking, thus
constructing complex queries visually. With controlled experiments
and expert reviews, we validate that the tool helps users perform
analysis task more quickly (p < 0.01) and with greater accuracy
(p < 0.05), and also generates insight in a short amount of time.

The major contributions of our work are as follows:

• We identify the goals and tasks of QA researchers in analyz-
ing evaluations to derive design rationales. We highlight the
need to further study the workflows of complex AI system
development.

• We propose prismatic analysis, a novel approach for multi-
angle categorization and shared aggregate metrics for category
comparison and connection, which enables finer-grain pattern
discovery.

• We design and implement QSAnglyzer, a visual analytics sys-
tem for performing prismatic analysis on QA system evalua-
tions, and validate its effectiveness. We discuss how prismatic
analysis and QSAnglyzer scaffold evaluation analysis, and we
provide directions for future research to extend the tool and
apply prismatic analysis to other AI domains.

2 BACKGROUND AND RELATED WORK

2.1 Question Answering Systems
The QA system is a type of complex AI system that gained recog-
nition when IBM’s QA system, Watson, appeared on the Jeopardy!
game show [7] in 2011. The subject of study now for four decades,
QA is one of the oldest AI problems. Numerous QA systems have
been proposed to answer short factoid questions [3, 7, 10], stan-
dardized tests in geometry [19], and mathematics [11]. Some QA
systems are designed to answer multiple-choice questions (e.g.,
[5, 27]), whereas some are designed for direct-answer questions
(e.g., [26, 34]).

Typical QA systems can be roughly divided into two types: IR-
based and knowledge-based [8, Chap 28]. IR-based QA systems rely
on large sets of unstructured corpora and use IR techniques to search
for sentences that contain words found in the questions. In contrast,
knowledge-based QA systems are built upon structured knowledge
(e.g., lists of tuples for relations between semantically typed entities)
for reasoning. The knowledge base is usually smaller and more
organized than IR corpora, and the knowledge can be chained to
infer unseen facts.

In addition, in complex AI systems, ensemble methods are often
used to combine results from a set of weaker AI systems to generate
the final outputs. Likewise, a QA system may comprise a set of
solvers that answer questions, and use ensemble methods to produce
the system’s final answers.

2.2 VA for Multi-Experiment Result Analysis
Conducting multi-experiment result analysis, including comparison
and exploration, is one of the most common usages of visualiza-
tion in scientific domains. For instance, Nocke et al. propose a
series of visualization views for climate science simulation output
comparison [17]. Wilson and Potter focus on visualizing ensemble
simulation data for weather forecasting and support side-by-side
comparisons [30]. Malik et al. utilize visualization to inspect sets of
3D X-ray computed tomography images where device parameters
varied when taking the images [13]. Although such applications
are common in scientific domains, they do not directly apply to QA
system design for three reasons. First, most above-mentioned work
focuses on simulation data from the same models with different pa-
rameter settings, which is not the case in QA system design. Tuning
parameters is only one type of change that QA researchers make to
their solvers. Often times the changes are more complex, such as
adding more knowledge, changing language processing algorithms,
and so on. Furthermore, there is typically more than one type of
solver, and they all work very differently from each other; thus there
is no intuitive way to visualize the parameter spaces across these
heterogeneous solvers. Such unique characteristics of QA systems
compose a different design space for visualization from the typical
comparative visualization used in scientific domains.

2.3 VA for Inspecting Computational Models
Inspection of computational models, such as ML models, is a grow-
ing topic in the field of human-computer interaction (HCI) and
visualization (VIS) research. Two key goals of this direction are
to better understand complex black-box models, and to reduce the
effort required to construct and tune models. The former goal aims
to make it easier for model designers to pin down potential issues
with the complex computational process, whereas the latter provides
clues for improvement of models. For instance, Smilkov and Carter
demonstrate an interactive visualization that shows the process of
neural networks (NN) [21] so that model designers can see how a
NN model progresses over time. Various work in classifier weight
tuning [9, 24] or feature ideation [4] also demonstrates how visual-
ization can simplify efforts to construct a better model. Although
QA and other complex AI systems also contain computational mod-
els, enhancing the performance of such complex systems requires



more than focusing on specific models. Therefore, we focus on the
workflow level of the development process, and specifically focus
on building analytics that support evaluation analysis.

2.4 Multi-view Learning and Multiple clustering Solu-
tions

Prismatic analysis can be related to multi-view learning and multiple
clustering solutions. Multi-view learning is considering a machine
learning problem from multiple views (e.g., multiple sources or dif-
ferent feature subsets) since the target learning problem cannot be
described using a single view [32, 33]. Multiple clustering solutions
focus on using multiple ways to cluster data points [14], and have
been used in subspace analysis of high-dimensional data space [25].
Like multi-view learning, prismatic analysis also emphasizes the
need to consider multiple views (here referred to as ‘angles’), but it
does not focus on learning problems per se. In addition, multi-view
learning does not require defining categories in each view. In con-
trast, for multiple clustering solutions, the goal is to define categories
(i.e., clusters) in many different ways: this is similar to the idea of
prismatic analysis. However, prismatic analysis can be positioned as
the next step after finding multiple clustering solutions. The results
from multiple clustering solutions can be fed into prismatic analysis.
Moreover, multiple clustering solutions focus on finding categories,
whereas prismatic analysis emphasizes comparisons and making
connections between categories. Thus, defining aggregate metrics
is also a critical step of prismatic analysis, which is not a part of
multiple clustering solutions. In Section 4, we describe in detail
prismatic analysis.

3 USER REQUIREMENT ANALYSIS

In this section, we describe user requirements and design rationales
derived through in-depth user studies with QA researchers.

3.1 Identifying User Requirements
To identify user requirements in analyzing QA system evaluations,
we worked with a research team with about 20 people who built a
QA system at a research institute in the USA for six months. The
formative study mostly happened in the first month of the project.
During the formative study, we informally interacted with the team
in a daily basis, and we conducted a series of interviews with five
QA researchers who are primary solver developers. All of the inter-
viewees hold PhD degrees and have been working on the project as
research scientists full time for more than a year, and their experience
in the related fields ranges from 10 years to 33 years.

The QA system consists of multiple solvers for answering stan-
dardized science exam questions. The system uses an ensemble
method to combine answers from the solvers, and returns a final
answer for each question. For simplicity, we hereafter use ‘solvers’
to refer to both solvers and the QA system, as the QA system can
be considered an ensemble solver that outputs answers based on all
solvers’ answers.

3.1.1 QA Evaluation Overview
To develop and test the QA system, the QA researchers ran solvers
on a set of evaluation questions. When we worked with the QA
researchers, their set contained about 1,200 multiple-choice ques-
tions, and they sometimes ran evaluations on a subset of the whole
question set. They had another question set contained direct-answer
questions, but in our study we focused on multiple-choice questions
as they were the center of solver development at the time of the
study.

To evaluate a solver, the QA researchers run the solver on an
arbitrary set of questions. The solver takes each question’s descrip-
tion and answer choices, and produces a confidence score for each
choice. The choice with the highest confidence score is taken as the
solver’s final answer to the question. Sometimes, confidence scores

of choices are tied, and the solver returns more than one choice as
its answer to a question. Currently, QA researchers measure the
solver’s overall accuracy in answering these questions. In addition
to single solver evaluation, QA researchers also run multiple solvers
together as an ensemble solver. The output of an ensemble of solvers
combines individual solvers answers and returns an answer.

3.1.2 QA Researcher Goals and Tasks
From interviews and informal interactions with the QA researchers,
we noted three primary goals for them when analyzing evaluations:

G1. Look for ways to improve a solver. When they analyze eval-
uations, one key goal is to seek opportunities to improve the
solver. Example ways include examine whether a solver has
enough data (e.g., knowledge) to answer a question, or whether
other dependencies, such as entailment service, impact solver
performance.

G2. Examine if new changes to a solver improve performance.
After QA researchers modify a solver, they evaluate whether
the changes are helpful. As they often have a hypothesis in
mind about how the changes may work, they also examine
whether the newer version of a solver behaves as expected, and
whether any unexpected behavior appears.

G3. Understand the strengths and weaknesses of solvers. Since
the final QA system combines the answers of all solvers, it
is important to understand the strengths and weaknesses of
solvers. This understanding provides opportunities for a re-
searcher to better contribute to overall system performance.

We then collected and compiled the following common tasks by
observing how QA researchers investigate evaluations to achieve the
above goals. For each task, we note in parentheses its corresponding
goals.

T1. Compare two or more versions of a solver for G1 and G2.
After modifying a solver, QA researchers usually compare the
new version with the original version. They look for questions
that the newer version gets right but the older version gets
wrong, and vice versa. Sometimes, they investigate questions
for which the two versions of the solver have different answers,
regardless of the correctness. Since solver development is not a
linear process (i.e., versions can branch out), these comparison
tasks are sometimes performed on more than two versions at
the same time.

T2. Contrast one solver’s behavior with that of other solvers
(G1, G3). In addition to comparing different versions of a
solver, QA researchers also contrast a solver’s behavior with
that of other solvers to understand solver strengths and weak-
nesses (G3). QA researchers compare their solvers behavior to
that of others as a reference to show increases or decreases in
their own solvers performance.

T3. Categorize and/or filter questions (G1, G2, G3). QA re-
searchers often focus on question subsets to improve certain
categories (G1), investigate component-wise changes (G2), or
identify patterns of solver performance between subsets (G3).
To this end, they either try to group the whole set into cate-
gories and examine individual categories, or they find a way to
retrieve relevant questions (e.g., questions containing certain
keywords).

T4. Investigate question descriptions to make sense of a
solver’s behavior (G1). QA researchers usually read ques-
tion text and answer choices first to see if they can come up
with a hypothesis for the solver’s correct or incorrect answer.
This task relies on their past experience in developing the solver
and debugging similar questions. QA researchers do not al-
ways have an idea about why solvers behave in certain ways



for a question. Therefore, they have to closely investigate the
question to discover situations where, for instance, a solver is
being misled by a particular word and thus exhibits extremely
different behavior for two very similar questions.

T5. Inspect how a solver answers a question (G1, G2). To know
more about how a solver answers a question, QA researchers
program solvers to produce intermediate output (e.g., describ-
ing the reasoning process) so that they can quickly make sense
of what may have happened. They also have solver-specific
tools to drill down into detailed steps.

T6. Find insight that can improve a large subset of questions
at once (G1). One QA researcher noted, “We want to make
changes that can fix (solvers’ answers to) many questions, not
just one at a time.” In order to efficiently gain insight, they
typically investigate subsets of questions that have shared prop-
erties and that are not too small (i.e., fewer than 10 questions).
For instance, they examine questions that belong to the topic
‘adaptation’ to figure out what knowledge should be added to
the knowledge base to answer questions on this topic.

T7. Look for questions for which solvers return no answers, or
multiple answers (G1). To improve a solver, one common
approach taken by researchers is to investigate questions for
which the solver returns no answers, or multiple answers. For
these questions they seek ways to modify the solver to break
ties between choices, or cause the solver to return a single
answer.

T8. Share their findings and insights with other researchers
(G1, G3). Researchers sometimes share findings from eval-
uation analyses with each other. In particular, when discussing
solver strengths and weaknesses, spreadsheets and screenshots
are popular ways to illustrate their findings.

3.2 Preliminary Investigation: Sunburst Visualization
During our user requirement analysis, the QA researchers expressed
interest in utilizing the three types of categories they manually la-
beled: topic, subtopic, and question type (To be consistent with later
sections, we term each categorization an angle. Note that angles do
not refer to degrees encoded within the Sunburst). Thus, as a way
to crystallize user requirements, we created an interactive Sunburst
visualization [22] using the three angles (Fig. 2) . In this visualiza-
tion, a Sunburst corresponds to an evaluation. The three angles were
arranged hierarchically. Each layer of the Sunburst consisted of the
categories within one angle. The color indicated the solver accuracy
in the corresponding categories in an evaluation. The accuracy was
bucketed into 10 levels of the red-green scale shown in the legends
on the top left. All Sunbursts were linked together such that as users
interacted with one of the Sunbursts by clicking a category in any
level, the other Sunburst views were updated to reflect the change.

3.2.1 Challenges
We presented the visualization to the QA researchers and conducted
contextual inquiries. Although researchers reacted positively and
commented that some solver patterns confirmed their understanding
of the solver strengths and weaknesses, they indicated a few chal-
lenges and issues when using this Sunburst visualization for their
analysis:

C1. Difficulty when comparing more than two evaluations. As
tasks T1 and T2 indicate, QA researchers need to compare
more than two evaluations. We attempted to present more than
two Sunbursts to researchers in a single view: Although the
visualization did provide an overview of the results of multiple
evaluations, the more Sunbursts that were shown (i.e, the more
evaluations loaded), the larger area they occupied on the screen.
This makes it more difficult to conduct complex analysis and
comparisons.

Figure 2: Sunburst visualization utilizing three angles: topic, subtopic,
and question type, the three question categories. Each Sunburst
layer consists of the categories within an angle. Color indicates solver
accuracy for the corresponding categories in an evaluation.

C2. Unidentifiable categories in outer layers. Although we used
only a three-level hierarchy in this Sunburst visualization, the
researchers still found it difficult to see and identify categories
in the outer layers. Although they could filter categories in
outer layers of the hierarchy, finding the category they sought
to investigate was challenging. This problem is further com-
plicated by additional angles, which add more layers to the
Sunbursts.

C3. Complex query requirements. Though the Sunburst visual-
ization provided an overview of the evaluations, QA researchers
found it difficult to perform more complex queries. For exam-
ple, they may want to filter on multiple angles, such as ques-
tions that belong to the topic ‘Matter’ or ‘The Earth’, but that
also belong to the question type ‘Definition’ or ‘Story’. Such
complex queries are difficult to perform using the Sunburst
visualization.

3.3 Design Rationales
Given the identified goals and common tasks of users, as well as the
challenges found in our preliminary investigation of the Sunburst
visualization, we present the following design rationales that led to
our focus on prismatic analysis and the QSAnglyzer design.

R1. Take questions as the center of analysis. When QA re-
searchers analyze evaluations, questions are the center of anal-
ysis. In most of their tasks, they directly investigate questions
(T3, T4, and T6) or solver behavior with regard to questions
(T5 and T7). In addition, questions are the only aspect of the
QA system shared between all solver evaluations. Furthermore,
even though solvers can be very different from each other,
and not every researcher knows all the solvers, they can still
communicate and share insights about the questions (T8).

R2. Prioritize accuracy, the number of questions, and accuracy
variance as key variables. When researchers modify a solver,
their goal is to increase accuracy (G1). When they investigate
a subset of questions, they want to find a large subset to ensure
that changes made based on the set have a broad impact (G1
and T3). In addition, when studying solver strengths and weak-
nesses (G3 and T2), they look for a set of questions for which
solvers have highly different accuracy. Therefore, we consider
accuracy, the number of questions, and accuracy variance as
the high-priority variables for design.

R3. Support categorization. Researchers group questions into
categories when focusing on a subset of questions (T3), com-



paring between versions of a solver (T1), or contrasting solvers
(T2). Thus, we observe that categorization can be valuable in
revealing patterns in evaluations.

R4. Consider diverse comparison scenarios and complex
queries. QA researchers need support for diverse compari-
son scenarios and complex queries. They compare between
versions of solvers (T1) and different solvers (T2). They also
want to determine whether a solver’s performance is worse
in one category than in another (T3), to decide which cate-
gory should be improved (G1). Moreover, they also compare
whether two categories have different performance patterns
across solvers (T3) to identify strengths and weaknesses (G3).
These comparison scenarios can take place after search and
filtering (T3 and R5). Therefore, it is necessary to have a de-
sign that supports any combination of the above comparison
scenarios.

R5. Enable filtering and search. As researchers often drill down
into a subset of questions (T3), our VA design should include
both filtering and search functionalities.

R6. Show multiple angles at the same time. QA researchers often
want to examine evaluations from multiple angles. For example,
they may want to find questions for which two versions of a
solver produce different answers (T1). They may also want
to see for which topics solver accuracy differs the most (T2).
Hence, it is critical to show multiple angles of evaluations. In
addition, from challenges C2 and C3 we learn that presenting
different angles as layers in a hierarchy may not be ideal, and
thus we suggest presenting multiple angles in parallel.

R7. Ensure scalability. As there may be more than two sets of
evaluations involved in the analysis (C1), it is essential that
the design scales up. In our case, we aim to support at least
eight sets of evaluations since the QA system contains eight
solvers. Additionally, we need to ensure that the design scales
to multiple angles (R6).

R8. Make different levels of evaluation details available. The
design should incorporate various levels of evaluation details,
including high-level metrics like accuracy, the description and
choices of questions (T4), solver confidence scores on each
choice of a question (T7), and intermediate outputs (T5).

R9. Accommodate existing workflows. Our VA tool design
should fit into the QA researchers’ existing workflows so that
they can use the tool together with their solver-specific tools
(T5), and discuss and share findings with each other (T8).

4 PRISMATIC ANALYSIS

The study of QA researchers’ current evaluation analysis workflows
underlies our proposal of prismatic analysis. Although this is in the
context of QA systems, we argue that the approach can be applied
to other types of complex AI system evaluation analysis. Therefore,
we start from a generalized formal definition of prismatic analysis
using mathematical notation:

Given a set of data points that constitute a high-dimensional
data space D, we define a set of categorization functions F . Each
function fi ∈ F divides D into a set of categories Ci from the i-th
angle. In addition, we define a set of aggregate metrics M. Each
metric m ∈ M represents aggregated information of data points in
scalar. As a result, we can compare categories within an angle or
between angles based on the set of aggregate metrics. Furthermore,
some of the metrics may have multiple measurements, and thus we
can also compare these measurements within a category. Last, we
can filter to a subset of D and conduct the same analysis.

We call this approach ‘prismatic analysis’ because when we con-
sider the data space D, the categorization functions F act like a
set of prisms. These prisms are oriented at different angles toward

the space so that we see the space divided in various ways. This
results in multiple ways to group the data points into categories.
Then the set of aggregate metrics M summarizes all the categories
in the same way regardless of angles; this aids us in making compar-
isons within and between categories in an angle, as well as making
connections between angles.

We then describe how prismatic analysis can be applied to analyze
QA evaluations: As questions are the center of QA evaluation anal-
ysis (R1), the question space, the high-dimensional space formed
by questions, corresponds to the data space D. The question space
can be divided into categories from multiple angles (each angle
corresponding to a categorization function in F), such as by topics
or by question types. This implements our design rationales R3 and
R6. The aggregate metrics M here include accuracy (denoted as
Macc), the number of questions (Mnum), and accuracy variance
(Mvar) between evaluations, as suggested by design rationale R2.
The Macc metric can have multiple measurements when we load
multiple evaluations. Moreover, prismatic analysis allows us to filter
subsets of questions to conduct the same analysis, which fulfills
design rationale R5.

Prismatic analysis is not limited to QA system evaluations. This
approach can be applied to other types of complex AI system evalu-
ation analysis by identifying the data space D, categorization func-
tions F , and aggregate metrics M. We further discuss this point in
Section 7.4.

Although prismatic analysis captures many analytical tasks per-
formed by QA researchers, it can be overwhelming to have multiple
angles and metrics in pure text (e.g., labels and numbers). In addi-
tion, design rationales R7, R8, and R9 are not directly supported
by prismatic analysis. This leads to the design of QSAnglyzer, our
visual analytics tool introduced in the next section.

5 QSANGLYZER

In this section, we describe the design of QSAnglyzer, which is im-
plemented as a JavaScript web application using React.js and D3.js.
All data are stored in a PostgreSQL database and can be accessed
through web service calls (implemented in Node.js). QSAnglyzer
aims to support prismatic analysis of QA evaluations; its design
follows the rationales we derived in Section 3.3. To be more specific,
QSAnglyzer enables QA researchers to load evaluations into the
tool, and supports visual comparison and interactions based on the
framework of prismatic analysis. The system treats each evaluation
as a dataset in which each question is a data point. Results from
different evaluations are different dimensions of the data points. The
system provides seven default angles (F) to divide questions into
groups; we explain the details of each angle in Section 5.1. After
the user loads an evaluation on the system or performs filtering or
search, the system automatically calculates the aggregate metrics
(Macc, Mnum, and Mvar) for each category. The metric Macc has
N measures, one for each evaluation, where N is the number of
evaluations loaded on the system.

5.1 Angles
By default, the system provides seven angles that can be divided into
three types: question-related angles, evaluation-related angles, and
free labels. These angles are chosen and defined based on what we
found QA researchers need, though we envision that more angles
will be defined in the future. Question-related angles utilize the three
sets of manually labeled categories from the QA researchers (topics,
subtopics, and question types) used in Section 3.2.

Evaluation-related angles are a set of angles automatically de-
rived from evaluations. These include correctness (is correct), agree-
ment of answers (difference), and the number of selected choices
(num selected). The ‘is correct’ angle categorizes questions based
on whether a selected choice was correct (T) or not (F), or having no
answer (X). For multiple evaluations, the categories are correctness



permutations across evaluations. For example, when the system
is loaded with three evaluations, the ‘F / T / T’ category refers to
questions for which the first evaluation is incorrect but the second
and third evaluations are both correct.

The ‘difference’ angle divides questions into two categories:
‘same’ and ’different’. Questions for which all evaluations have
the same answer belong to the former; the rest belong to the latter. A
question may have the same answers in two evaluations, but as long
as there is another evaluation that has a different answer, it belongs
to the ‘different’ category.

The ‘num selected’ angle aims to support task T7 by categorizing
questions based on the number of selected choices. For simplicity,
we treat questions with more than two choices as being in the same
group; thus each question can only have ‘0’, ‘1’, or ‘>=2’ selected
choices. Similar to the ‘correctness’ angle, in the case of multiple
evaluations, the categories are permutations across evaluations. For
instance, when there are three evaluations, the category ‘>=2 / 1
/ 1’ includes questions for which the first evaluation selected more
than one choice, and the other two selected only one choice.

The ‘free labels’ angle is designed for users to assign customized
categories to questions. Users label the questions in the bottom
‘Question Table’ panel. We describe this process in Section 5.2.3.

5.2 Interface Design

As shown in Fig. 1, the QSAnglyzer interface consists of three
basic panels: the top left ‘Evaluations’, the top right ‘Question
Space Angles’, and bottom ‘Question Table’ panels. This design
follows the visualization mantra: “Overview first, zoom and filter,
details on demand [20].” The ‘Evaluations’ panel provides the most
high-level overview of the evaluations, and helps users keep track
of how many questions have been filtered by showing the partial
bars. In the ‘Question Space Angles’ panel, users perform prismatic
analysis; this panel allows users to filter and zoom into a finer set of
questions. Finally, the ’Questions Table’ panel shows details related
to questions and solver behavior, and supports keyword search and
question bookmarking (i.e., starring). This design fulfills our design
rationale R8. In addition to the basic panels, users obtain a link to
share the current view of the tool by clicking the link icon on the top
right corner of the tool, which follows design rational R9. Below, we
explain each component of the QSAnglyzer and the design decisions
for visual encoding and tool interaction.

5.2.1 Top Left Panel: A Visual Summary of Evaluations

In the top left ‘Evaluations’ panel, users add or remove evaluations
to visualize by providing URLs (the URLs link to their existing
database APIs). Users assign a name to the evaluation, or the sys-
tem automatically names the evaluation based on the solver. We
represent each set as a colored vertical bar, where the color indicates
the overall accuracy (dark green represents high accuracy). The
maximum height of the bars corresponds to the highest number of
questions loaded to the tool, and the height of the individual bars are
proportional to the number of questions in each evaluation (labeled
in text under the bars). When hovering over the bar, a tooltip pops
up to show the exact accuracy.

These bars provide a visual summary for evaluations, and are
updated when the user interacts with the tool. When a user filters a
set of questions, a partial bar appears reflecting this filtering action.
The color of the partial bar represents the accuracy for the filtered
set of questions. If the number of questions varies across evalua-
tions, the system automatically filters the subset of questions that all
evaluations contain.

Design choices Although color is not the best choice for en-
coding quantitative values such as accuracy, it is a visual attribute
supported by human pre-attentive processing [28]. In addition, since
length is a recommended visual attribute for showing quantitative

data [16], we use it to encode the number of questions. The two
design choices are also used in the ‘Question Space Angles’ panel.

5.2.2 Top Right Panel: Question Space Angles
The Question Space Angles panel on the top right supports prismatic
analysis as a metaphorical representation of the question space. Each
box on the panel represents an angle (an fi ∈ F) and its categories
(Ci), and each category is represented by a horizontal slice. The
height of a slice corresponds to the number of questions (Mnum) in
this category, where the height of an entire angle box corresponds
to the number of visible questions (i.e., all questions or remaining
questions after filtering). For simplicity, hereafter we directly use
‘angles’ to refer to these boxes, and ‘categories’ to refer to the
horizontal slices.

Figure 3: The design of an angle. The header shows the name of
the angle. Each slice is a category within the angle, and its height
corresponds to the number of questions in the category. The vertical
segments represent evaluations, and the colors indicate how accu-
rate the solver in the evaluation is on the questions in the category.
When hovering over a category, a tooltip appears, providing detailed
numbers.

Fig. 3 illustrates the parts of an angle. When there are N eval-
uations, every category is divided into N vertical segments. Each
segment represents one evaluation. For example, in Fig. 1, as the tool
is loaded with three evaluations, each category has three segments.
The order of the segments follows the order in the ‘Evaluations’
panel. The color of each segment reflects the accuracy (Macc) of
the solver in an evaluation on the questions within the category.

When the user clicks a category within an angle, a filtering action
is triggered, and all angles are updated based on the remaining ques-
tions. When users hover over a category, a tooltip appears (Fig. 3),
providing detailed information such as the number of questions in
the category, the number of correctly-answered questions in each
evaluation, and the corresponding accuracy. When users seek to fil-
ter more than one category, they use the filter box shown in Fig. 4A.
If a filter is applied to an angle, the filter icon on its header turns
white. The ‘Active Filters’ panel on the left lists the currently applied
filters.

Categories within an angle are sorted with respect to variances
in accuracy (Mvar) across evaluations (i.e., the first category on
the top has the highest variance across evaluations). In the filter
box, however, we sort the categories with respect to the number of
questions (Mnum). As we have observed cases in which both the
order of Mnum and Mvar can be useful, we use different ordering
mechanisms as a quick way to provide the two types of information
without re-ordering.



Figure 4: (A) The filter box of the ‘topics’ angle. The user can filter
on more than one category using the check boxes on the left. The
categories are sorted with respect to the number of questions. (B)
The panel shows the details of the solvers’ answers to a question. By
unfolding the ‘outputs’, users examine a solver’s intermediate outputs
for an choice.

Design choices We chose to use a box to represent an angle
and show all angles in parallel to reflect challenge C2 and design
rationales R6 and R7. Such a design enables the easy adding and
removing of angles, as well as changing their order. In addition,
putting evaluations as segments next to each other greatly facilitates
comparisons between evaluations and reflects challenge C1. We
easily scale up to nine evaluations (R7). In addition, we chose to use
orders to encode Mvar . Although Mvar is a quantitative variable,
the exact values and the difference between values are not critical
for analysis. Therefore, we assign a ordinal encoding to the variable.
We also use orders to show Mnum. This is an additional encoding
to the height encoding for this variable, which is suitable for ordinal
encoding.

5.2.3 Bottom Panel: Question Table

The ‘Question Table’ panel at the bottom provides finer-grain details
of solver evaluations. By default, this panel is collapsed. Every row
in the table corresponds to a question and solvers’ answers in the
evaluations. The first column enables users to ‘bookmark’ (or ‘star’)
questions, which can then be viewed as the bookmarked questions
in the ‘Starred’ tab. The second and following columns of the table
show the solvers’ choices and confidence scores in each evaluation.
The order of the evaluations is consistent with both the order in the
‘Evaluations’ panel as well as that in the categories.

Bar charts in these columns represent the normalized confidence
scores (between 0 and 1) returned from each evaluation, where the
x-axis is the choices and the y-axis is the scores. When users mouse
over the bars, a small tooltip appears with the normalized and raw
scores. The letter above each bar chart represents the choice with the
highest confidence score (that is, the selected choice). When a solver
returns more than one choice, the letters of all the selected choices
are shown above the bar chart, whereas when a solver returns no
answer, the grid is empty (like the first column in the second row in
Fig. 1). In contrast to the accuracy colors in the top two panels, the
colors in these bar charts are binary: green for correctly answered
questions, and orange for incorrectly answered questions.

In addition to solvers’ answers, each row of the question table
also shows the question’s membership to each angle’s categories
(the yellow labels in the bottom panel of Fig. 1). Users change the
question’s membership of a category by adding or removing labels.
This is also where users create and assign customized labels to the
‘free labels’ angle.

Currently, each page of the question table contains 100 questions.
Users can also perform keyword searches. As with filtering, com-
pleted search actions update the interface to reflect the questions
returned from the search. If users want to retrieve solvers’ inter-
mediate outputs for a question, they click the eye icon in the last

Table 1: Lab study design. We took the number of evaluations
(IVNumOfEval) and the tool used (IVtool) as the independent vari-
ables.

Tools (IVtool)
Excel

(control)
QSAnglyzer
(treatment)

# Evaluations
(IVNumOfEval)

2 2-Excel 2-QSAnglyzer
4 4-Excel 4-QSAnglyzer
6 6-Excel 6-QSAnglyzer

column. A pop-up panel (Fig. 4B) appears so that users can compare
intermediate outputs (folded under ‘outputs’ by default).

Design choices The design of this panel is based on the spread-
sheets the QA researchers created before the study. Therefore, even
though both colors and heights encode different variables from other
panels, for the QA researchers these encodings are acceptable. Note
that we designed this panel for multiple-choice questions, but the
design can be tweaked to show direct-answer questions without the
need to change the other panels.

6 EVALUATION

To verify the effectiveness and efficiency of QSAnglyzer, we con-
ducted a lab study with non-experts and expert reviews. The goal
of the lab study with non-experts was to evaluate the effectiveness
of the visual and interaction design of QSAnglyzer. We defined the
tasks in the lab study based on tasks drawn from the requirement
analysis. With the expert reviews, we sought to examine whether
QSAnglyzer facilitates insight discovery. The two evaluation ap-
proaches are designed based on Munzner’s nested model [15]. In
this section, we describe both studies in detail.

6.1 Lab Study with Non-experts
Since QA researchers commonly utilize spreadsheets in their work-
flows, we designed a set of Excel spreadsheets that support the
same functionalities for prismatic analysis. These functionalities
include the use of multiple angles to categorize questions; the use
of accuracy, the number of questions, and accuracy variance as ag-
gregate metrics; and filtering. In addition to the interface, we tested
whether the number of evaluations loaded in the tools impacts user
performance.

6.1.1 Lab Study Design
Participants were asked to perform sets of predefined tasks with both
QSAnglyzer and the Excel spreadsheets. In addition, we tested both
Excel spreadsheets and our tool with 2-, 4-, and 6-solver evaluations
(details in Table 1). We took as the independent variables the number
of evaluations (IVNumOfEval) and the tool used (IVtool). For each
condition, the participants performed three tasks; we measured the
time spent (DVtime) and the accuracy (DVacc) of these tasks. We
adapted a within-group study design in which all participants went
through all conditions. We used balanced Latin square design [29]
to minimize the learning effect.

6.1.2 Data and Tasks
We prepared three sets of evaluations from different solvers or ver-
sions of solvers to design tasks. The tasks were selected from the
common workflow of QA researchers. Here is an example task and
what it was meant to achieve for QA researchers:

“For questions for which the three solvers yield different answers,
filter to the category “F/T/F” of the “is correct” angle. What is the
category of “question type” that has the largest number of questions?”
(This task is a combination of tasks T1, T3, and T6.)

The goal of this task is a combination of goals G2 and G3. QA
researchers are interested in questions that solvers disagree on, and



Figure 5: Screenshot of a highly customized Excel spreadsheet for
the baseline condition. Users can perform rich interactions: for exam-
ple, users can filter to a category or categories, and the summarized
performance statistics of each category are pre-calculated and pre-
sented.

Figure 6: Aggregate metrics in the customized Excel spreadsheet for
the categories of the ‘topics’ angle. Upon filtering, aggregate metrics
are automatically updated.

specifically look at those question types for which a solver outper-
forms others.

6.1.3 Excel Spreadsheets

We created highly customized Excel spreadsheets that support pris-
matic analysis (Fig. 5). For example, as shown in Fig. 6, aggregate
metrics of each categories are also pre-calculated and presented. A
data table on the first sheet enables users to filter on angles. Upon
filtering, aggregate metrics are automatically updated. However, un-
like QSAnglyzer, the order of the categories in the spreadsheet is not
re-ordered after filtering. We believe this is a reasonable difference
and limitation, since automatic re-ordering requires the writing of
Excel-specific scripts, which for most users is not an option.

6.1.4 Participants

From the research institute and from the authors’ social networks,
we recruited 13 non-experts who were not QA researchers but had
experience in AI-related fields. The ages of the participants ranged
from 21 to 40 (9 male, 3 female, and 1 other gender). Ten held
post-graduate degrees in computer science or related fields.

6.1.5 Study Setup and Process

Each participant came to the study room individually. We described
the context of the project to them, and then explained the two tools:
QSAnglyzer and the customized Excel spreadsheets. Prior to audio
and screen recording, the moderator secured participant permission.
All tasks were performed on an 28-inch external monitor with a USB
mouse and keyboard.

Prior to the formal sessions, the participants were given four prac-
tice tasks: two on each tool. We guided the participants in the use
of both the Excel spreadsheets and QSAnglyzer, and ensured they

Figure 7: Average time and accuracy for test conditions. Statistical
testing showed significant differences between tools (IVtool) on both
DVtime (p < 0.01) and DVacc (p < 0.05).

understood the tasks. The formal study consisted of six sessions cor-
responding to each study condition. In each session, the participants
were given one of the two tools preloaded with N evaluations. The
number N depended on which condition the session was. During
each session, the participants performed three tasks which were ran-
domly selected from a pool of predefined tasks without replacement.
Each task had a three-minute time limit. We ensured that participants
spent no more than the allotted time on the tasks.

During the practice session, the participants spoke aloud their task
answers directly. Once the formal sessions started, the participants
were required to submit their answers via a Google form in a window
next to the tool. After performing each task, we helped participants
restore the tool to its initial state with no filtering and sorting.

6.1.6 Analysis and Results

We analyzed the results of the lab study by a mixed-effects model
analysis of variance. The model took the within-group variables
(IVtool and IVNumOfEval) as factorial effects, but considered each
participant as a random level drawn from a population [31]. For each
condition, the time (DVtime) of each participant was the average
time for the completion of three tasks, whereas the accuracy (DVacc)
was the number of correctly answered tasks (up to three). The
average time and accuracy for each condition are shown in Fig. 7.

Statistical testing showed significant differences between the
tools (IVtool) for both DVtime (p < 0.01) and DVacc (p <
0.05), but the difference between the number of loaded evalua-
tions (IVNumOfEval) was significant with respect to neither time
nor accuracy. There was also no interaction effect between IVtool

and IVNumOfEval. These results showed that QSAnglyzer more
effectively and efficiently supports users performing the tasks. In-
terestingly, the results did not show significant differences between
three levels of IVNumOfEval. This may be because the tasks did
not emphasize the comparison of multiple evaluations. Even though
the results were not significant, during the study we did observe that
when more evaluations were given, participants expressed difficulty
in finding the target categories.

6.2 Use Cases from Expert Reviews

We invited five QA researchers in the research institute to test and
review QSAnglyzer. Each spent an hour testing the tool, and we
asked them to think aloud throughout the testing sessions. We pre-
loaded the evaluations of the solvers they developed, and let them
explore freely. The researchers all reacted positively and found
numerous insights within an hour. They commented that being able
to thoroughly examine questions from various angles enabled them
to quickly form hypotheses and verify them. They also starred many
questions that they were interested in for further inspection. Below
we highlight some of use cases and insights they found during the
sessions.



Figure 8: User insights: (A) One of the QA researchers confirmed
their solver was improving in the newer version (the right segments)
by examining the ‘difference’ and ‘is correct’ angles. After filtering
to the ‘different’ category, the QA researcher was able to draw this
conclusion by comparing the number of questions in the ‘X / T’ and ‘F
/ T’ categories with the number of questions in the ‘T / F’. (B) Another
QA researcher discovered an unusual trend over time in the ‘water’
category under the ‘subtopic’ angle. The tool was loaded with seven
different versions of a solver (in chronological order from left to right).
The researcher filtered to the ‘the earth’ category in the ‘topic’ angle,
and found this trend in the ‘subtopic’ angle. After further examination
of the intermediate outputs, the QA researcher concluded that the
earlier versions had higher accuracy in this category only by chance.

6.2.1 Investigating Gain and Loss of Accuracy after Changes

As noted in goal G2, QA researchers seek to examine how changes
to a solver impact its behavior. The researchers performed this task
using QSAnglyzer. For example, one researcher first filtered to the
‘different’ category in the ‘difference’ angle, and then investigated
the ‘is correct’ angle (Fig. 8A) by comparing the height of the
categories. The researcher then explained: “This (the “is correct”
angle) shows that we have gained more than we lost after adding
the new knowledge base... which is a good thing. It also shows that
many questions our solver could not answer before (marked as “X”
in the categories’ names) now have answers.”

6.2.2 Uncovering Incidentally Correct Questions

In one session, the tool was loaded with the evaluations of seven
versions of a specific solver, from left to right in chronological
order. Fig. 8B shows a pattern discovered by a researcher in this
session; the researcher learned that the solver’s overall performance
gradually improved for questions on the topic “the earth” due to
new knowledge added to the solver’s knowledge base. However, the
researcher noticed that the subtopic “water” did not show the same
improvement. By filtering for questions with the “water” category,
the QA researcher concluded that the first couple of versions of the
solver were answering this set of questions correctly only by chance.
This insight was novel and thought-provoking to the QA researcher.

6.2.3 Discovering Previously Unknown Solver Behaviors

During the evaluation sessions, three QA researchers observed
solver behavior that surprised them. For instance, because of the
“num selected” angle a researcher realized that an earlier version of
his solver chose more than one answer choice for many questions
(more than 30). He noted that this pattern is significant since the
tie between answer choices had been broken by newer versions of
the solver. Another researcher commented that he did not know
there were questions where his solver did not choose any answer
choice at all. He also noted that he discovered a potential bug using
QSAnglyzer: he believed that the sum of all confidence scores of all
answers should equal one, which was not always the case.

6.2.4 Relating to Different Solvers

In addition to loading different versions of the same solver, we also
showed evaluations of different solvers to the QA researchers. One
found that a legacy solver that used an IR-based approach tended to
perform better on “story”-type questions (a category of the “question
types” angle). Another QA researcher compared two versions of a
solver along with a legacy IR-based solver as a reference. By doing
so, the QA researcher learned that the solver behaved much like the
legacy IR-based solver: “I am interested in questions that used to be
wrong, and now are correct, and want to see if the IR-based solver
also answered correctly on those questions. (after the exploration
and comparison)... I guess my solver now becomes more like an
IR-based solver.”

6.2.5 Finding Tricky or Mislabeled Questions

Since QSAnglyzer can be used to quickly form complex queries on
different angles, all researchers found questions that they considered
tricky or bad questions (e.g., they thought there was more than one
correct answer). One found a few mislabeled questions, and was
able to use the label modification functions in the ‘Question Table’
panel after the tool was deployed to their work environment.

7 DISCUSSION AND FUTURE WORK

In this section, we discuss how prismatic analysis and QSAnglyzer
scaffold evaluation analysis. Then we discuss potential directions to
extend the tool and other future directions of research.

7.1 Scaffolding Evaluation Analysis Workflows
Since QA or other AI systems are often highly complex, generating
insights from evaluations requires scaffolding diverse scenarios for
comparison and examination. Prismatic analysis provides a founda-
tion that supports such scenarios by multi-angle categorization. The
shared aggregate metrics across angles enables diverse scenarios of
comparing categories. The QSAnglyzer design further supports the
analysis workflows by leveraging the power of visual comparison
and interactive filtering.

From the lab study we found that when performing the compar-
ison tasks using QSAnglyzer, users are faster and more accurate.
From expert reviews we witnessed QA researchers gain insight into
their solvers within one-hour sessions. In addition, when having
multiple angles in separate spreadsheets as in our lab study, we
found users often lost track and forgot what filters had been applied.
In contrast, QSAnglyzer helped QA researchers to maintain context
by presenting angles and filters at the same view. This aligns with
our design rationale R6.

7.2 Adding Evaluation-based or Automatic Angles
The current QSAnglyzer design includes only seven angles. Though
these angles are defined based on the QA researchers’ need, there is
space to add more angles. Three directions for future work include:
evaluation-dependent, semi-automatic, and fully-automatic angles.
Evaluation-dependent angles refer to angles that are specific to an
evaluation, unlike the current evaluation-related angles, which treat
all evaluations equally. For example, solvers usually have features
for intermediate processing: we can group questions based on these
features. However, features are evaluation-dependent and may be
extremely different across evaluations, which requires further studies
for categorization and interface design. Semi-automatic angles are
an augmented version of the ‘free labels’ angle. Although QSAn-
glyzer supports manually-created angles, researchers commented
that they want the system to recommend similar questions when
they assign a category label to a question: fully-automatic angles
should create categories using clustering algorithms. These three
directions are not mutually exclusive. Thus, we can also create
evaluation-dependent angles using clustering algorithms, or we can



run topic modeling algorithms (e.g., [2]) to create automatically-
generated topics. Preliminary investigation in this direction suggests
a challenge: questions that are interesting to researchers may drift
from time to time. It may be difficult to collect a set of questions to
define other categories that researchers seek to investigate in every
evaluation. In addition, automatic algorithms may often result in
uninterpretable categories, and thus may not be useful to users. We
leave addressing these issues for future work.

7.3 Supporting Complex AI System Development

Evaluation analysis is critical in developing complex AI systems,
yet it is only part of the development workflow. Many other parts
of the workflows are under-studied and could be better supported.
For instance, since each solver has many components, we could
also build visual analytics to help researchers to understand the in-
teraction between QA system components. In addition, one QA
researcher told us that QSAnglyzer is useful when they have devel-
oped a solver that is accurate enough. When a solver is in its initial
development stage, they may want to focus on getting one or two
questions correct, rather than on reviewing overall patterns. These
examples indicate the need for more holistic studies on complex AI
system development, which could lead to an open design space of
visual analytics tools.

7.4 Applying Prismatic Analysis to Other AI Domains

One key reason for using prismatic analysis is that the analysis tar-
get (e.g., evaluations) and the goal (e.g., improving a QA system)
are complex. This necessitates examination from many angles and
categorization to help discover patterns. Therefore, prismatic anal-
ysis is suitable not only for analyzing QA system evaluations, but
also any complex analysis target that can benefit from multi-angle
categorization. For example, a potential use case for prismatic anal-
ysis is analyzing evaluations of a recommendation system. We can
categorize user profiles from multiple angles, and determine how
well a recommendation system performs on various profile cate-
gories. However, since in AI systems new development practices
keep emerging, more in-depth studies are needed on user workflows
to apply prismatic analysis in different contexts. In addition, in
the QSAnglyzer design, we focus on three aggregate metrics, one
of which (Macc) has multiple measurements. Other contexts may
have different aggregate metrics, and thus the design of QSAnglyzer
may be adjusted. Using prismatic analysis in different contexts and
building visual analytics for different contexts are directions that
call for further exploration.

8 CONCLUSION

Building AI systems is a fascinating but challenging problem to
AI researchers, yet most work in HCI and VIS focuses only on
the development and investigation of individual models. In this
paper, we address the development of complex AI systems in the
domain of QA systems. Specifically, we focus on the workflows of
multiple-evaluation analysis. We work closely with QA researchers
to extract their goals and tasks in evaluation analysis, identifying
challenges and design rationales that lead to our proposal of pris-
matic analysis and QSAnglyzer. Although here this is applied to
the QA domain, we envision that prismatic analysis can be applied
to other AI domains and so on as the design of QSAnglyzer. This
work opens a door and highlights the need for better support for AI
development. More studies should further examine the design space
and seek opportunities for visual analytics research.
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